

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME						
CENTRE NUMBER			CAN NUM	DIDATE IBER		

CHEMISTRY

0620/33

Paper 3 Theory (Core)

October/November 2017

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

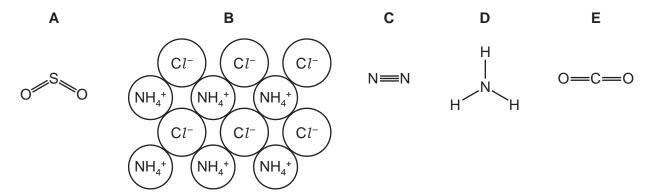
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

The diagram shows the structures of five substances, A, B, C, D and E.

Answer the following questions using only the structures in the diagram. Each structure may be used once, more than once or not at all.

(a) Which structure,	Α,	В,	C,	D	or E	,
----------------------	----	----	----	---	-------------	---

(i)	is a compound which is used as a fertiliser,	[1
(ii)	is a diatomic molecule,	[1
(iii)	contains chloride ions,	[1
(iv)	is a gas which turns damp red litmus paper blue,	[1
(v)	is an element?	[1

(b) Structure A is sulfur dioxide. Sulfur dioxide is an atmospheric pollutant.

(ii)

(i)	State one source of sulfur dioxide.	
-----	--	--

Give one adverse effect of sulfur dioxide on health.	

......[1]

(c) An isotope of nitrogen is represented by the symbol $^{15}_{7}N$.

Deduce the number of protons, neutrons and electrons in this isotope of nitrogen. number of protons number of neutrons number of electrons

[Total: 10]

[3]

© UCLES 2017

2		e atmosphere of the planet Venus contains 96.4% carbon dioxide, 3.5% nitrogen and small ounts of other gases.						
	(a)	Describe how Venus' atmosphere differs from the Earth's atmosphere. Give three differences.						
		1						
		2						
		3						
			[3					
	(b)	Des	scribe a test for carbon dioxide.					
	. ,	tes						
		res	ult					
			[2]					
	(c)	Ver	nus' atmosphere also contains small amounts of water and argon.					
		(i)	Water is a covalent compound.					
			 Complete the diagram to show the arrangement of electrons in a molecule of water, the symbols of the atoms present. 					
			Show outer shell electrons only.					
			[2]					
		(ii)	The melting point of argon is –189 °C. The boiling point of argon is –186 °C.					
			What is the physical state of argon at –200 °C? Explain your answer.					

	(iii)	Argon is unreactive.			
		Explain why argon is unreacti	ve in terms of its electr	onic structure.	
					[1]
(d)		uds of sulfuric acid are present furic acid reacts with magnesiu			
		H ₂ SO ₄ + MgO	$CO_3 \rightarrow MgSO_4 + CO_2$	₂ + H ₂ O	
	(i)	Write the word equation for th	is reaction.		
					[2]
	(ii)	Calculate the relative molecul Use your Periodic Table to he		d, H ₂ SO ₄ .	
		ose your renounch able to he	ap you.		
			relative mole	ecular mass =	[2]
(e)	Sulf	fur dioxide is found in the atmo	spheres of both Venus	and the Earth.	
(-)	(i)	State one use of sulfur dioxid	•		
	()				[1]
	(ii)	Sulfur dioxide dissolves in wa			
	(11)	Which one of the following ph		nation.	
		Put a circle around the correct			
		рН2 р	H7 pH9	pH14	[4]
					[1]
					[Total: 16]

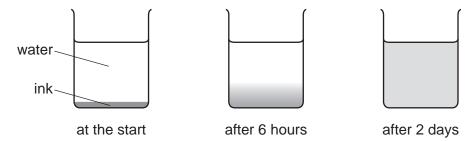
3 The list shows some of the compounds used to manufacture ink.

calcium carbonate
ethanoic acid
iron(II) sulfate
potassium dichromate(VI)
sodium sulfate
sulfuric acid

		sulfuric acid	
(a)	Wh	ich compound is present in limestone?	
			[1]
(b)	Нус	drated iron(II) sulfate is heated gently.	
		$FeSO_4.7H_2O \rightarrow FeSO_4 + 7H_2O$	
	(i)	Describe what you would see when a test-tube containing a small amount hydrated iron(II) sulfate is heated gently.	of
			[1]
	(ii)	Describe a test for aqueous iron(II) ions.	
		test	
		result	[2]
(c)	Iror	${f n}({ m II})$ sulfate can be prepared by reacting an excess of iron with dilute sulfuric acid.	
	(i)	Complete the chemical equation for this reaction.	
		Fe + $H_2SO_4 \rightarrow FeSO_4 + \dots$	[1]
	(ii)	Describe how you could remove the excess iron from the mixture formed.	
			[1]

((b	(i)	Complete the structure	of ethanoic a	acid to show a	all of the atoms	and all of the	e bonds
١,	<i>4,</i>	1''	Complete the structure	or curarion c	acia to silow a	in or the atoms	and an or the	5 001103

[2			
12			


(ii) Give **one** observation when aqueous ethanoic acid reacts with magnesium.

(e) Black ink contains a mixture of different coloured dyes.

Draw a labelled diagram of the apparatus used to separate these different coloured dyes by chromatography.

[3]

(f) Blue ink was placed at the bottom of a beaker containing water. After 2 days, a blue colour had spread throughout the beaker.

Explain these observations using the kinetic particle model.

[Total: 15]

4 The table shows the properties of four substances.

substance	boiling point	electrical conductivity of solid	electrical conductivity when molten	density in g/cm³
aluminium	high	conducts	conducts	2.70
diamond				3.51
potassium bromide	high	does not conduct	conducts	2.75
sulfur	low	does not conduct		2.07

(a)	Con	nplete the table to show the electrical conductivity of solid diamond and molten sulfur. [[2]
(b)	Give	e one piece of evidence from the table that shows that sulfur is a simple covalent substanc	æ.
		[[1]
(c)	Wha	at information in the table shows that potassium bromide is an ionic compound?	
		[
(d)	(i)	State one property of aluminium given in the table which makes it suitable for making aircraft.	าg
		[[1]
	(ii)	Aluminium oxide is obtained from the ore bauxite.	
		What method is used to extract aluminium from aluminium oxide?	
		[[1]
(e)	Mol	ten potassium bromide can be electrolysed.	
	Pre	dict the products of this electrolysis at	
	the	positive electrode (anode),	
	the	negative electrode (cathode)	 [2]

(f)	(i)	Which two statements describe the structure and Tick two boxes.	bonding in diamond?
		Diamond has ionic bonds.	
		Diamond has a giant structure.	
		Diamond is a simple molecule.	
		Diamond has covalent bonds.	[1]
	(ii)	Give one use of diamond.	ניז
			[1]
			[Total: 11]

[2]

- **5** Lead is extracted from an ore which contains lead(II) sulfide.
 - (a) The ore is first heated in air.

Balance the chemical equation for this reaction.

2PbS +
$$O_2 \rightarrow 2PbO +SO_2$$
 [2]

(b) The lead(II) oxide produced is then reduced with carbon.

$$PbO + C \rightarrow Pb + CO$$

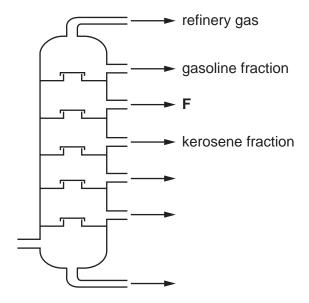
- (i) How does this equation show that the lead(II) oxide is reduced?
-[1]
- (ii) Lead is a metal in Group IV. Iron is a transition element.

Give **two** physical properties that are typical of transition elements.

- -[2]
- (d) Iron from the blast furnace is converted into steel using oxygen and basic oxides.
 - (i) What is the purpose of the oxygen?

(c) State the conditions needed for iron to rust.

-[1]
- (ii) Which **one** of these oxides is a basic oxide? Put a circle around the correct answer.


carbon dioxide nitrogen dioxide potassium oxide sulfur trioxide

Explain your answer.

[2]

(e)	Ste	el is an alloy.	
	Wha	at is meant by the term <i>alloy</i> ?	
			[2]
(f)	(i)	Give one common use of mild steel.	[1]
	(ii)	Give one common use of stainless steel.	
			[1]
		[Total:	14]

6 The diagram shows a fractionating column used for the fractional distillation of petroleum.

- (a) On the diagram, write
 - the letter **X** to show where the temperature in the fractionating column is highest,
 - the letter B to show where bitumen is removed from the fractionating column.

[2]

(b) Give the name of the fraction labelled ${\bf F}$ in the diagram.

[1]

- (c) Refinery gas contains methane, ethane and propane.
 - (i) Draw the structure of a molecule of ethane showing all of the atoms and all of the bonds.

[1]

(ii) Methane can be converted to hydrogen by reaction with steam.

Balance the chemical equation for this reaction.

$$CH_4 + H_2O \rightarrow CO + \dots H_2$$
 [1]

(iii) This reaction is endothermic.

What is meant by the term *endothermic*?

(d)	Sor	me petroleum fi	ractions are c	racked to form diffe	erent hydrocarbo	ons.							
	Describe the process of cracking.												
	In y	 In your answer explain what is meant by the term <i>cracking</i>, state the conditions needed to crack hydrocarbons. 											
						[4]							
(0)	The	table above a	omo proportio	oo of four alkanoo									
(e)	(e) The table shows some properties of four alkanes.												
	number of carbon atoms in one molecule boiling point /°C												
	methane 1 -164												
			ethane	2	-88								
			propane	3									
			butane	4	0								
	(i) How does the boiling point change as the number of carbon atoms in one molecule increases?												
						[1]							
	(ii)	Predict the bo	iling point of p	oropane.									
						[1]							
(iii)			and separation of t									
(, 111 <i>)</i>		-										
		arrangement											
		separation				[2]							
						[Total: 14]							
						[10tal. 14]							

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

			2	<u> </u>	4	01	e	30 S	8	7	argon 40	36	ン	pton 7.	¥	e	non 31	9,9	, L	uop -					
		<i>></i>		- ie	-		_	ž '\		_	ar	.,	_		4,	<u>×</u>	× ×		<u>п</u> с	<u> </u>					
		\				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Ą	astatine -					
		VI				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъ	polonium —	116	^	livermorium -		
		>				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209					
		2				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -		
		≡				2	Δ	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lT	thallium 204					
					•				•			30	Zn	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	S	copernicium —		
												29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -		
	Group											28	Z	nickel 59	46	Pd	palladium 106	78	₽	platinum 195	110	Ds	darmstadtium -		
	ָב <u>֖</u>											27	ဝိ	cobalt 59	45	Rh	rhodium 103	77	'n	iridium 192	109	Ĭ	meitnerium -		
2			- ⊒	hydrogen	1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	¥	hassium -		
												25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –		
							pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -		
						2	Ney	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	ā	tantalum 181	105	Ср	dubnium –
							ato	rels				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	¥	rutherfordium -		
												21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids			
		=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -		
		_				ო	<u>'</u>	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	22	Cs	caesium 133	87	Ā	francium		

17 .	n	Iutetium	175	103	ב	lawrencium	I
70	Λb	ytterbium	173	102	2	nobelium	ı
69	E	thulium	169	101	Md	mendelevium	ı
89 I	ш	erbinm	167	100	Fm	ferminm	I
29	운	holmium	165	66	Es	einsteinium	I
99	δ	dysprosium	163	86	ర	californium	ı
· 65	Q L	terbium	159	26	Æ	berkelium	ı
. 64	ලි	gadolinium	157	96	Cm	curium	ı
83 I	В	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pn	plutonium	ı
61	Pm	promethium	I	93	ď	neptunium	ı
09	P Z	neodymium	144	95	\supset	uranium	238
59	Pr	praseodymium	141	91	Ра	protactinium	231
58	Çe	cerium	140	06	Т	thorium	232
22	Га	lanthanum	139	68	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).